
EGR 304 Friday, 3/27/2020

1

We discussed the meaning of baud.

The short version: In RS-232 contexts, baud rate is the same as bits-per-second counting the start and stop symbols.

Example: An RS-232 link is set up at 9600 baud using 8N2 signaling.
What is the maximum rate of sending data in bytes/second?

The Tx clock runs at 9600 Hz. Each 8-bit byte sent also requires one start bit and two stop bits (“8N2” implies this).
Thus each transmitted byte requires 1 + 8 + 2 = 11 bit-cells of time.
At 9600 Hz a bit cell takes 1/9600 s. A transmitted byte of useful data plus start and stop will take 11/9600 s.
The overall useful byte rate will be 9600/11 = 872.727 bytes/sec.
(If ASCII text is being sent with one bit of parity, then this channel can send 872.727 characters/second.)

But the “RS-232 definition of baud” is not the true definition of baud.
Baud is the reduced fundamental binary bit rate of communication after all redundancy is removed.
In practice, the baud rate of a channel is always less than (or equal to) the binary bit rate.

Example: Terrestrial broadcast digital TV in North America uses eight-level vestigial sideband modulation (8VSB).
The transmitter’s symbol clock runs at 10.8 MHz. Each symbol bears (at most) the equivalent useful information of
three binary bits. Thus the baud rate of a TV channel is 10.8 X 3 = 32.4 M-baud. Any information source that can be
losslessly compressed to 32.4 Mbits/sec. or less can be sent via this channel. This is a 32.4 Megabaud channel.

Using the true definition of baud, the RS-232 channel in the example above is running at only 8727.27 baud. (Only
8727.27 bits per second of data can be passed through that channel.) We should say that the Tx clock is 9600 Hz, not
that the baud rate is 9600.

What do we mean by, “removing redundancy?”

In the English language certain rules of spelling and grammar force redundancy into the text.
If I write, “Hello Worl“
Then you can fully understand that the message is “Hello World.”

In another example, the letter “u” is supposed to follow “q” in normal spelling.
So, why don’t we make a rule to just drop every “u” that follows “u” when transmititng normal text.
If I write that, “We will qit sending the letter ‘u’ in this situation.” it is easy for you to re-insert the “u” and understand
the message: “We will quit sending the letter ‘u’ in this situation.”
But these are only minor examples based on some pretty complicated rules of spelling and grammar.

Huffman code finds and eliminates redundancy much more efficiently.
In Huffman code an information source is scanned in some way and a code table is produced and sent in the clear
using a standard method (ASCII would work) and then following that the encoded message is sent.
Huffman coding is optimal in a certain narrow sense, but is not globally optimal for all information sources.

https://en.wikipedia.org/wiki/Huffman_coding

There is lots more to this topic beyond Huffman coding.

1

2

https://en.wikipedia.org/wiki/Huffman_coding

EGR 304 Friday, 3/27/2020

2

From Asynchronous to Synchronous

Definition of a synchronous serial interface:

Data is sent in packets composed of many bits of data. The data may be streamed continuously or sent
in bursts called packets. The on-going nature of data transmission allows timing information for symbol
(bit or byte) decoding to be embedded in the stream of data.

The receiver recovers a clock signal from this embedded timing information. The recovered clock at the
receiver is therefore phase coherent (has only timing delay) with the transmitted clock.

There is a very easy way to send the transmitter’s clock information: Use a parallel wire (or wires!).
Technically, this is a synchronous serial protocol. We will discuss a few examples later. (I2C, SPI)
However an extra wire for a clock signal only makes sense over short distances (across a circuit board).
For USB, Ethernet, Firewire, etc. we cannot afford extra wiring just for the clock.

Rather than using an extra wire (copper is expensive) the data stream may be modified to include clock
information.

Manchester coding
A simple way to embed clock timing in the data stream

https://commons.wikimedia.org/wiki/File:Manchester_encoding_both_conventions.svg

The transmitter clock defines bit cells, say with each rising edge of the clock.

Every rising edge of the clock defines the start of a new bit cell.
1

0

3

4

https://commons.wikimedia.org/wiki/File:Manchester_encoding_both_conventions.svg

EGR 304 Friday, 3/27/2020

3

Manchester coding
A simple way to embed clock timing in the data stream

https://commons.wikimedia.org/wiki/File:Manchester_encoding_both_conventions.svg

The transmitter clock defines bit cells, say with each rising edge of the clock.
The transmitter sends false data during the first half of the clock cycle

Every rising edge of the clock defines the start of a new bit cell.
1

0

1

0

1

0

Serial
Input

Output

Manchester coding
A simple way to embed clock timing in the data stream

https://commons.wikimedia.org/wiki/File:Manchester_encoding_both_conventions.svg

The transmitter clock defines bit cells, say with each rising edge of the clock.
The transmitter sends false data during the first half of the clock cycle and
true data during the second half of the clock cycle.

Every rising edge of the clock defines the start of a new bit cell.
1

0

1

0

1

0

Serial
Input

Output

5

6

https://commons.wikimedia.org/wiki/File:Manchester_encoding_both_conventions.svg
https://commons.wikimedia.org/wiki/File:Manchester_encoding_both_conventions.svg

EGR 304 Friday, 3/27/2020

4

Manchester coding
A simple way to embed clock timing in the data stream

https://commons.wikimedia.org/wiki/File:Manchester_encoding_both_conventions.svg

The transmitter clock defines bit cells, say with each rising edge of the clock.
The transmitter sends false data during the first half of the clock cycle and
true data during the second half of the clock cycle.
The result is a transition in the middle of every clock cycle—Use this to reconstruct the clock at the receiver.

(After each Manchester code transition, lock the clock detector out for a bit more than a half clock cycle.)
Every rising edge of the clock defines the start of a new bit cell.

1

0

1

0

1

0

Serial
Input

Output

Tx

Rx Clock—identical to Tx clock
except for propagation delay

1

0

Manchester coding
A simple way to embed clock timing in the data stream

https://commons.wikimedia.org/wiki/File:Manchester_encoding_both_conventions.svg

What if a connection drops in on an existing Manchester encoded stream and grabs a “wrong” edge for clock detection?

Every rising edge of the clock defines the start of a new bit cell.
1

0

1

0

1

0

Serial
Input

Output

Tx

Rx Clock—falls into phase-lock
after a few transitions.

Connection established at this time
1

0

7

8

https://commons.wikimedia.org/wiki/File:Manchester_encoding_both_conventions.svg
https://commons.wikimedia.org/wiki/File:Manchester_encoding_both_conventions.svg

EGR 304 Friday, 3/27/2020

5

Manchester coding
A simple way to embed clock timing in the data stream

https://commons.wikimedia.org/wiki/File:Manchester_encoding_both_conventions.svg

The transmitter clock defines bit cells, say with each rising edge of the clock.
The transmitter sends false data during the first half of the clock cycle and
true data during the second half of the clock cycle.
The result is a transition in the middle of every clock cycle—Use this to reconstruct the clock at the receiver.
The direction of the transition tells the receiver what the data was. Rising edge = logic-1, Falling edge = logic-0

Every rising edge of the clock defines the start of a new bit cell.
1

0

1

0

1

0

Serial
Input

Output

Tx Rx Clock—identical to Tx clock
except for propagation delay

Rx Data—identical to Serial Data
Input except for delay.

1

0

Manchester coding
A simple way to embed clock timing in the data stream

https://commons.wikimedia.org/wiki/File:Manchester_encoding_both_conventions.svg

The transmitter clock defines bit cells, say with each rising edge of the clock.
The transmitter sends false data during the first half of the clock cycle and
true data during the second half of the clock cycle.
The result is a transition in the middle of every clock cycle and
the direction of the transition tells the receiver what the data was. (Rising edge = logic-1, Falling edge = logic-0)

You might notice that if the
communications channel can send pulses
as fast as needed for Manchester code,
then the clock info. is consuming ½ the
bandwidth since a simple base-band
channel can support 2 bits/clock cycle.
(There is no free lunch—the clock info is
not sent for free.)

RLL codes are even more efficient than Manchester code.
http://tomkleen.com/CSCI280/Null%20and%20Lobur%20Instructor%20Files/PowerPointPres_Ch2A_ECOA2e.ppt

Every rising edge of the clock defines the start of a new bit cell.
1

0

1

0

1

0

Serial
Input

Output

9

10

https://commons.wikimedia.org/wiki/File:Manchester_encoding_both_conventions.svg
https://commons.wikimedia.org/wiki/File:Manchester_encoding_both_conventions.svg
http://tomkleen.com/CSCI280/Null%20and%20Lobur%20Instructor%20Files/PowerPointPres_Ch2A_ECOA2e.ppt

EGR 304 Friday, 3/27/2020

6

Ethernet—Originally it was done this way

http://www.digibarn.com/collections/diagrams/ethernet/

Ethernet—an example of a synchronous serial network
The original Ethernet. Used Manchester code and “CSMA/CD.”
officially named “10 Base 5” aka Thickernet, Garden Hose Ethernet

CSMA/CD = Carrier sense, multiple access/collision detection.
It was adapted from Aloha Net (University of Hawaii)

Main procedure:
• Is my frame ready for transmission? If not, ask again (wait for ready).
• Is medium idle? If not, wait until it becomes idle
• Start transmitting.
• Did a collision occur? If so, go to collision detected procedure.
• Reset collision counter and end frame transmission.

Collision detected procedure:
• Continue transmission with a jam signal instead of a normal frame
• Increment collision counter.
• If too many attempts, abort transmission—report network failure.
• Calculate and wait random back off period based on number of collisions.
• Re-enter main procedure at idle detection stage.

Segment of 50  coaxial cable

25 

Low-Z driver

Tx Rx

Medium attachment unit transmits
and receives simultaneously.
If a mismatch, a collision is signaled.

Digital
comparator

Medium Attachment Unit

Collision signal

11

12

http://www.digibarn.com/collections/diagrams/ethernet/

EGR 304 Friday, 3/27/2020

7

MAU

Computer

50  Terminator

Repeater

Half Repeater
Point-to-point
Any protocol
1 km max distance

Half Repeater

500 meters maximum per segment

Many MAU/computers
attached to each segment.
Each MAU is directly fastened
onto the network cable

Point-to-point, ~5 meters typically,
50 m max, uses Attachment Unit
Interface (AUI) standard. (15-pins)

$500 per computer connected,
In 1980 Dollars

More MAU/Computers connected to this segment.

10Base-5 Ethernet, “Thick Ethernet” “Garden Hose Ethernet” “Original Ethernet”

Computer—
The Network
server

MAU

The network
segment with
the server is
the “Backbone
Segment.”

Ethernet—the original way

https://commons.wikimedia.org/wiki/File:10Base5transcievers.jpg

13

14

https://commons.wikimedia.org/wiki/File:10Base5transcievers.jpg

EGR 304 Friday, 3/27/2020

8

Ethernet—an example of a synchronous serial network
The first simplification of Ethernet,
officially named “10 Base 2” aka Thinernet, Cheapernet
10 Mbits/sec, same as 10Base5, very fast for the era.
Used Manchester code and CSMA/CD

Total length of a segment limited to “200 meters” (actually 185 m)
185 m/30 computers = ~6.2 m between each computer.
The limited segment length limits the number of computers on the network.

http://www.windowsnetworking.com/articles-tutorials/netgeneral/thin.html
https://www.amazon.com/VideoSecu-Adapter-Connector-Splitter-BNC28/dp/B0002ZPFHG

NIC with AUI (connects to a MAU)
and thin Ethernet connectors.

BNC tee—required on
the back of the NIC

Ethernet—an example of a synchronous serial network
The first simplification of Ethernet,
officially named “10 Base 2” aka Thinernet, Cheapernet

Maintaining correct network topology was difficult since users think a wire is a
wire is a wire. The stub shown above causes echoes which create collisions.

http://www.windowsnetworking.com/articles-tutorials/netgeneral/thin.html

15

16

http://www.windowsnetworking.com/articles-tutorials/netgeneral/thin.html
https://www.amazon.com/VideoSecu-Adapter-Connector-Splitter-BNC28/dp/B0002ZPFHG
http://www.windowsnetworking.com/articles-tutorials/netgeneral/thin.html

EGR 304 Friday, 3/27/2020

9

Ethernet—an example of a synchronous serial network
The first simplification of Ethernet,
officially named “10 Base 2” aka Thinernet, Cheapernet

This is the correct way to connect the computers, but the two cables
running side-by-side seems wasteful to most people.

http://www.windowsnetworking.com/articles-tutorials/netgeneral/thin.html

Ethernet—an example of a synchronous serial network
The second simplification of Ethernet,
Officially named “10 Base T” aka Twisted Pair Ethernet, Cat-3 Ethernet.

Took advantage of analog “Plain old telephone service” wiring.
Many commercial buildings were loaded with extra “cat-3” wiring when built.
This was the technology that eclipsed all other local area networks.
Still 10 Mbps, Manchester, CSMA/CD except added buffering could avoid collisions

Hub can be replaced with a switch
New: Build an address table on the
fly by monitoring source and
destination addresses. Gives
administrative control over
connections.

https://pattito0.wordpress.com/

17

18

http://www.windowsnetworking.com/articles-tutorials/netgeneral/thin.html
https://pattito0.wordpress.com/

